CHT High Temperature 260°C, COG Dielectric, 10 –100 VDC (Industrial Grade)

Overview

KEMET's CHT High Temperature 260°C surface mount Multilayer Ceramic Capacitors (MLCCs) are constructed of a robust and proprietary COG/NP0 base metal electrode (BME) dielectric system that offers industry-leading performance at extreme temperatures.

These devices are specifically designed for applications in harsh environmental conditions such as down hole oil exploration, industrial high temperature electronics, geothermal, and aerospace which need capacitors that are robust and reliable at extreme temperatures such as 260°C. KEMET's COG dielectric exhibits no change in capacitance with respect to time and voltage and boast a negligible change in capacitance with reference to ambient temperature.

KEMET's CHT High Temperature 260°C also incorporates a gold (Au) termination finish providing a clean solderable surface that can withstand the most extreme environments. These devices are Lead (Pb)-Free, RoHS and REACH compliant without the need of any exemptions.

Benefits

- -55°C to +260°C operating temperature range
- Lead (Pb)-Free, RoHS and REACH compliant
- EIA 0603, 0805, 1206 & 1210 case sizes
- DC voltage ratings of 10V, 16V, 25V, 50V & 100V
- Capacitance offerings ranging from 0.5pF up to 15nF
- Gold (Au) termination finish
- Available capacitance tolerances of ±0.10 pF, ±0.25 pF, ±0.5 pF, ±1%, ±2%, ±5%, ±10% or ±20%
- Extremely low ESR and ESL
- High thermal stability
- High ripple current capability
- No capacitance change with respect to applied rated DC voltage
- Negligible capacitance change with respect to temperature from -55°C to +260°C
- No capacitance decay with time

Applications

- Downhole Oil Exploration
- Industrial High Temperature Electronics/Sensors
- Geothermal
- Aerospace
- Decoupling
- Bypass
- Filtering
- Transient voltage suppression

Built Into Tomorrow

Ordering Information

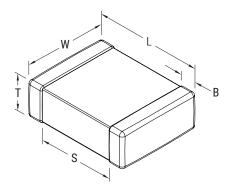
CHT	13	C	124	J	5	G	Α	F	TU
Series	Case Size (L" x W")	Specification/ Series	Capacitance Code (pF)	Capacitance Tolerance ¹	Rated Voltage (VDC)	Dielectric	Failure Rate /Design	Termination Finish	Packaging/ Grade (C-Spec)
СНТ	06 = 0603 08 = 0805 12 = 1206 13 = 1210	C = Standard	Two significant digits and number of zeros. Use 9 for 1.0 - 9.9 pF Use 8 for 0.5 - 0.99 pF ex. 2.2pF = 229 ex. 0.5pF = 508	$B = \pm 0.10 \text{ pF}$ $C = \pm 0.25 \text{ pF}$ $D = \pm 0.5 \text{ pF}$ $F = \pm 1\%$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$	8 = 10 V 4 = 16 V 3 = 25 V 5 = 50 V 1 = 100 V	G =COG	A = N/A	F = Gold (Au) 30 – 70 µin	See "Packaging C-Spec Ordering Options Table"

¹ Additional capacitance tolerance offerings may be available. Contact KEMET for details.

Qualification/Certification

High temperature (260°C) Industrial grade products meet or exceed the requirements outlined in Table 4 , Performance and Reliability.

Packaging C-Spec Ordering Options Table


Packaging Type/Options ¹	Packaging Ordering Code (C-Spec) ²
7" Reel	TU
13" Reel	7411 (EIA 0603 and smaller case sizes)
15 Reel	7210 (EIA 0805 and larger case sizes)
7" Reel - 50 pcs	T050
7" Reel - 100 pcs	T100
7" Reel - 250 pcs	T250
7" Reel - 500 pcs	T500
7" Reel - 1,000 pcs	Т1К0

¹ The terms "Marked" and "Unmarked" pertain to laser marking option of components. All packaging options labeled as "Unmarked" will contain capacitors that have not been laser marked. The option to laser mark is **not available** on these devices.

² Reeling quantities are dependent upon chip size and thickness dimension. When ordering using the "Txxx" packaging ordering codes (C-Specs) outlined above, product may be shipped on multiple 7" reels or a single 13" reel. Additional reeling or packaging options may be available. Contact KEMET for details.

Dimensions – Millimeters (Inches)

EIA Size Code	Metric Size Code	L Length	W Width	T Thickness	B Bandwidth	S Separation Minimum
0603	1608	1.60 (0.063) ±0.15 (0.006)	0.80 (0.032) ±0.15 (0.006)		0.35 (0.014) ±0.15 (0.006)	0.50 (0.020)
0805	2012	2.00 (0.079) ±0.20 (0.008)	1.25 (0.049) ±0.20 (0.008)	See Table 2	0.50 (0.02) ±0.25 (0.010)	0.70 (0.028)
1206	3216	3.20 (0.126) ±0.20 (0.008)	1.60 (0.063) ±0.20 (0.008)	for Thickness	0.50 (0.02) ±0.25 (0.010)	1.50 (0.060)
1210	3225	3.20 (0.126) ±0.20 (0.008)	2.50 (0.098) ±0.20 (0.008)		0.50 (0.02) ±0.25 (0.010)	1.50 (0.060)

Environmental Compliance

Lead (Pb)-free, RoHS, and REACH compliant without exemptions.

Table 1 – Capacitance Range/Selection Waterfall (0603 – 1210 Case Sizes)

		Case Size/		C	HTO	6			C	HTO	8			C	HT1	2			C	HT1	3	
	0.00	Series		(0603	3			(080	5				1206	5				1210)	
Capacitance	Cap Code	Voltage Code	8	4	3	5	1	8	4	3	5	1	8	4	3	5	1	8	4	3	5	1
	Code	Rated Voltage (VDC)	10	16	25	50	100	10	16	25	50	100	10	16	25	50	100	10	16	25	50	100
		Capacitance Tolerance																				
0.5 & 0.75 pF	508 & 758	B C D	CF	CF	CF	CF	CF	DN	DN	DN	DN	DN										
1.0 - 9.0 pF*	109 - 919*	BCD	CF	CF	CF	CF	CF	DN	DN	DN	DN	DN	EB	EB	EB	EB	EB	FB	FB	FB	FB	FB
9.1 pF	919	BCD	CF	CF	CF	CF	CF	DN	DN	DN	DN	DN	EB	EB	EB	EB	EB	FB	FB	FB	FB	FB
10 - 91 pF*	100 - 910*	F G J K M	CF	CF	CF	CF	CF	DN	DN	DN	DN	DN	EB	EB	EB	EB	EB	FB	FB	FB	FB	FB
100 - 180 pF*	101 - 181*	F G J K M	CF	CF	CF	CF	CF	DN	DN	DN	DN	DN	EB	EB	EB	EB	EB	FB	FB	FB	FB	FB
200 - 430 pF*	201 - 431*	F G J K M	CF	CF	CF	CF		DN	DN	DN	DN	DN	EB	EB	EB	EB	EB	FB	FB	FB	FB	FB
470 pF	471	F G J K M	CF	CF	CF			DP	DP	DP	DP	DP	EB	EB	EB	EB	EB	FB	FB	FB	FB	FB
510 pF	511	F G J K M	CF	CF	CF			DN	DN	DN	DN	DN	EB	EB	EB	EB	EB	FB	FB	FB	FB	FB
560 pF	561	F G J K M	CF	CF	CF			DN	DN	DN	DN	DN	EB	EB	EB	EB	EB	FB	FB	FB	FB	FB
620 pF	621	F G J K M	CF	CF	CF			DN	DN	DN	DN	DN	EB	EB	EB	EB	EB	FB	FB	FB	FB	FB
680 pF	681	F G J K M	CF	CF	CF			DN	DN	DN	DN	DN	EB	EB	EB	EB	EB	FB	FB	FB	FB	FB
750 pF	751	F G J K M	CF	CF	CF			DN	DN	DN	DN	DN	EB	EB	EB	EB	EB	FB	FB	FB	FB	FB
820 pF	821	F G J K M	CF	CF	CF			DN	DN	DN	DN	DN	EB	EB	EB	EB	EB	FB	FB	FB	FB	FB
910 pF	911	F G J K M	CF	CF	CF			DP	DP	DP	DP	DP	EB	EB	EB	EB	EB	FB	FB	FB	FB	FB
1,000 pF	102	F G J K M	CF	CF	CF			DP	DP	DP	DP	DP	EE	EE	EE	EE	EE	FB	FB	FB	FB	FB
1,100 pF	112	F G J K M	CF	CF	CF			DN	DN	DN	DN		EB	EB	EB	EB	EB	FB	FB	FB	FB	FB
1,200 pF	122	F G J K M	CF	CF	CF			DN	DN	DN	DN		EB	EB	EB	EB	EB	FB	FB	FB	FB	FB
1,300 pF	132	F G J K M	CF	CF	CF			DP	DP	DP	DP		EC	EC	EC	EC	EC	FC	FC	FC	FC	FC
1,500 pF	152	F G J K M	CF	CF	CF			DP	DP	DP	DP		EC	EC	EC	EC	EC	FE	FE	FE	FE	FE
1,600 pF	162	F G J K M						DP	DP	DP	DP		ED	ED	ED	ED	ED	FE	FE	FE	FE	FE
1,800 pF	182	F G J K M						DP	DP	DP	DP		ED	ED	ED	ED	ED	FE	FE	FE	FE	FE
2,000 pF	202	F G J K M						DN	DN	DN			ED	ED	ED	ED	ED	FE	FE	FE	FE	FE
2,200 pF	222	F G J K M						DN	DN	DN			EE	EE	EE	EE	EE	FG	FG	FG	FG	FG
2,400 pF	242	F G J K M						DN	DN	DN			EC	EC	EC	EC	EC	FC	FC	FC	FC	FC
2,700 pF	272	F G J K M						DN	DN	DN			EC	EC	EC	EC	EC	FC	FC	FC	FC	FC
3,000 pF	302	F G J K M						DP	DP	DP			EC	EC	EC	EC		FF	FF	FF	FF	FF
3,300 pF	332	F G J K M						DP	DP	DP			EE	EE	EE	EE		FF	FF	FF	FF	FF
3,600 pF	362	F G J K M						DP	DP	DP			EE	EE	EE	EE		FF	FF	FF	FF	FF
3,900 pF	392	FGJKM						DE	DE	DE			EF	EF	EF	EF		FF	FF	FF	FF	FF
4,300 pF	432	F G J K M						DE	DE	DE			EC	EC	EC	EC		FF	FF	FF	FF	FF
4,700 pF	472	FGJKM						DE	DE	DE			EC	EC	EC	EC		FG	FG	FG	FG	FG
5,100 pF	512	FGJKM						DE	DE	DE			ED	ED	ED	ED		FG	FG	FG	FG	FG
5,600 pF	562	FGJKM											ED	ED	ED	ED		FG	FG	FG	FG	FG
6,200 pF	622	FGJKM											EB	EB	EB			FG	FG	FG	FG	
6,800 pF	682	F G J K M											EB	EB	EB			FG	FG	FG	FG	
7,500 pF	752	FGJKM											EB	EB	EB			FC	FC	FC	FC	
8,200 pF	822	FGJKM											EC	EC	EC			FC	FC	FC	FC	
9,100 pF	912	FGJKM											EC	EC	EC			FE	FE	FE	FE	
10,000 pF	103	FGJKM											ED	ED	ED			FF	FF	FF	FF	
12,000 pF	123	FGJKM																FG	FG	FG		
15,000 pF	153	F G J K M																FG	FG	FG		
	Сар	Rated Voltage (VDC)	10	16	25	50	100	9	16	25	50	100	10	16	25	50	100	10	16	25	50	100
Capacitance	Code	Voltage Code	8	4	3	5	1	8	4	3	5	1	8	4	3	5	1	8	4	3	5	1
		Case Size/Series		CHI	Г06/0	603			CHI	Г08/0	805			CH.	T12/1	206			CH	T13/1	210	

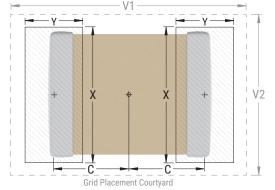
*Capacitance range includes E24 decade values only (i.e., 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, and 91). These products are protected under US Patent 7,172,985 & 7,670,981, other patents pending, and any foreign counterparts.

YAGEO
KEMET

Thickness	Case	Thickness ±	Paper C)uantity	Plastic (Quantity
Code	Size	Range (mm)	7" Reel	13" Reel	7" Reel	13" Reel
CF	0603	0.80 ± 0.07	4,000	15,000	0	0
DN	0805	0.78 ± 0.10	4,000	15,000	0	0
DP	0805	0.90 ± 0.10	4,000	15,000	0	0
DE	0805	1.00 ± 0.10	0	0	2,500	10,000
EB	1206	0.78 ± 0.10	0	0	4,000	10,000
EC	1206	0.90 ± 0.10	0	0	4,000	10,000
ED	1206	1.00 ± 0.10	0	0	2,500	10,000
EE	1206	1.10 ± 0.10	0	0	2,500	10,000
EF	1206	1.20 ± 0.15	0	0	2,500	10,000
FB	1210	0.78 ± 0.10	0	0	4,000	10,000
FC	1210	0.90 ± 0.10	0	0	4,000	10,000
FE	1210	1.00 ± 0.10	0	0	2,500	10,000
FF	1210	1.10 ± 0.10	0	0	2,500	10,000
FG	1210	1.25 ± 0.15	0	0	2,500	10,000
Thickness	Case	Thickness ±	7" Reel	13" Reel	7" Reel	13" Reel
Code	Size	Range (mm)	Paper C)uantity	Plastic	Quantity

Table 2 – Chip Thickness/Tape & Reel Packaging Quantities

Package quantity based on finished chip thickness specifications.


Table 3 – Chip Capacitor Land Pattern Design Recommendations per IPC-7351

EIA Size Code	Metric Size Code	Density Level A: Maximum (Most) Land Protrusion (mm)				I	Density Level B: Median (Nominal) Land Protrusion (mm)					Density Level C: Minimum (Least) Land Protrusion (mm)				
oouc	oouc	C	Y	X	V1	V2	C	Y	X	V1	V2	C	Y	X	V1	V2
0603	1608	0.90	1.15	1.10	4.00	2.10	0.80	0.95	1.00	3.10	1.50	0.60	0.75	0.90	2.40	1.20
0805	2012	1.00	1.35	1.55	4.40	2.60	0.90	1.15	1.45	3.50	2.00	0.75	0.95	1.35	2.80	1.70
1206	3216	1.60	1.35	1.90	5.60	2.90	1.50	1.15	1.80	4.70	2.30	1.40	0.95	1.70	4.00	2.00
1210	3225	1.60	1.35	2.80	5.65	3.80	1.50	1.15	2.70	4.70	3.20	1.40	0.95	2.60	4.00	2.90

Density Level A: For low-density product applications. Recommended for wave solder applications and provides a wider process window for reflow solder processes. KEMET only recommends wave soldering of EIA 0603, 0805 and 1206 case sizes.

Density Level B: For products with a moderate level of component density. Provides a robust solder attachment condition for reflow solder processes. **Density Level C:** For high component density product applications. Before adapting the minimum land pattern variations the user should perform qualification testing based on the conditions outlined in IPC Standard 7351 (IPC-7351).

Image below based on Density Level B for an EIA 1210 case size.

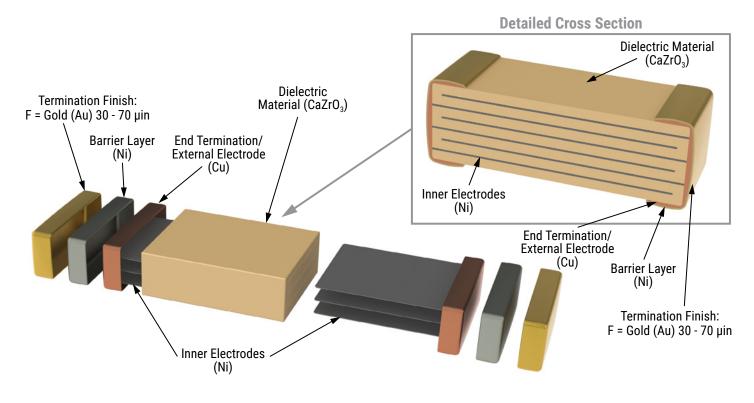
COG HT 260°C Performance and Reliability: SMD Test Methods and Conditions

Stress	Reference	Test Condition	Limits			
Visual and Mechanical	KEMET Internal	No defects that may affect performance (10X)	Dimensions according KEMET Spec Sheet			
Capacitance (Cap)	KEMET Internal	$C \le 1,000 \text{ pF}$ Frequency: 1 MHz ±100 kHz Voltage*:1.0 V _{rms} ±0.2 V C > 1,000 pF Frequency: 1 kHz ±50 Hz Voltage: 1.0 V _{rms} ±0.2 V * See part number specification sheet for voltage	Within Tolerance			
Dissipation Factor (DF)	KEMET Internal	C ≤ 1,000 pF Frequency: 1 MHz ±100 kHz Voltage*:1.0 V _{rms} ±0.2 V C > 1,000 pF Frequency: 1 kHz ±50 Hz Voltage: 1.0 V _{rms} ±0.2 V * See part number specification sheet for voltage	Within Specification Dissipation factor (DF) maximum limit at 25°C = 0.1%			
Insulation Resistance (IR)	KEMET Internal	Rated voltage applied for 120 ± 5 seconds at 25°C	Within Specification To obtain IR limit, divide MΩ-μF value by the capacitance and compare to GΩ limit. Select the lower of the two limits: 1,000 megohm microfarads or 100 GΩ.			
Temperature Coefficient of Capacitance (TCC)	KEMET Internal	Capacitance change with reference to +25°C and 0 VDC applied.* See part number specification sheet for voltageStepTemperature (°C)1+25°C2-55°C3+25°C (Reference)4+125°C	Within Specification: ±30 ppm / °C			
Dielectric Withstanding Voltage (DWV)	KEMET Internal	250% of rated voltage (5 ±1 seconds and charge/discharge not exceeding 50 mA)	Cap: Initial Limit DF: Initial Limit IR: Initial Limit Withstand test voltage without insulation breakdown or damage.			
Aging Rate (Maximum % Capacitance Loss/Decade Hour)	KEMET Internal	Maximum % capacitance loss/decade hour	0% Loss/Decade Hour			

COG HT 260°C Performance and Reliability: SMD Test Methods and Conditions cont.

Test	Reference	Test Condition	Limits
Terminal Strength	KEMET Internal	Shear stress test per specific case size, Time: 60±1 secondsCase SizeForce 06035N 08059N ≥120618N	No evidence of mechanical damage
Board Flex	AEC-Q200-005	3.0 mm minimum Test time: 60 ±5 seconds Ramp time: 1 mm / second	No evidence of mechanical damage
Temperature Cycling	JESD22 Method JA-104	50 cycles (~55°C to +260°C) 2 – 3 cycles per hour Soak Time: 1 or 5 minutes	Measurement at 24 hours ±4 hours after test conclusion. Cap: Initial Limit DF: Initial Limit IR: Initial Limit
Biased Humidity	MIL-STD-202 Method 103	Load Humidity: 1,000 hours 85°C/85% RH and rated voltage. Low Volt Humidity: 1,000 hours 85°C/85% RH and 1.5 V.	Measurement at 24 hours ±4 hours after test conclusion. Within Post Environmental Limits Cap: ±0.3% or ±0.25 pF shift IR: 10% of Initial Limit DF Limits Maximum: 0.5%
High Temperature Life	MIL-STD-202 Method 108	1,000 hours at 260°C with rated voltage applied	Within Post Environmental Limits Cap: ±0.3% or ±0.25 pF shift IR: 10% of Initial Limit DF: 0.5%

COG HT 260°C Performance and Reliability: SMD Test Methods and Conditions cont.


Test	Reference	Test Condition	Limits
Vibration	MIL-STD-202 Method 204	5 g's for 20 minutes, 12 cycles each of 3 orientations. Test from 10 – 2,000 Hz	Cap: Initial Limit DF: Initial Limit IR: Initial Limit
Mechanical Shock	MIL-STD-202 Method 213	1,500 g's 0.5 ms Half-sine, Velocity Change 15.4 feet/second (Condition F)	Cap: Initial Limit DF: Initial Limit IR: Initial Limit
Resistance to Solvents	MIL-STD-202 Method 215	Add Aqueous wash chemical OKEMCLEAN (A 6% concentrated Oakite cleaner) or equivalent. Do not use banned solvents.	Visual Inspection 10X Readable marking, no decoloration or stains. No physical damage.
Resistance to Soldering Heat	MIL-STD-202 Method 210	260 ± 5°C, Immersion time: 10 ±1 seconds (Condition B)	Cap: Initial Limit DF: Initial Limit IR: Initial Limit No physical damage.
Solderability	ANSI/J-STD-002	Magnification 50X. Conditions: a) Method B, 4 hours at 155°C, dry heat at 235°C b) Method B at 215°C category 3 c) Method D at 260°C category 3	Visual Inspection. 95% coverage on termination. No leaching

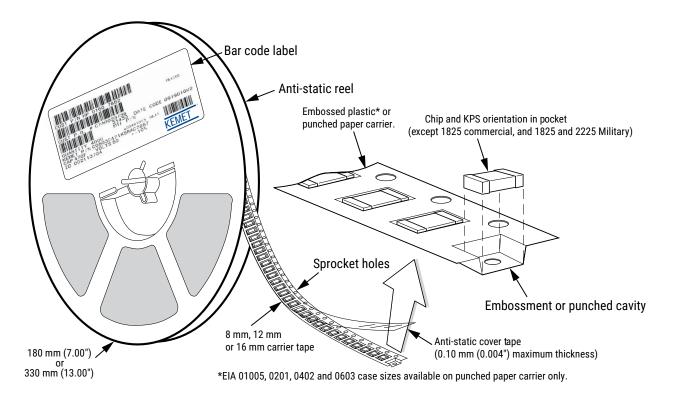
Storage and Handling

Ceramic chip capacitors should be stored in normal working environments. While the chips themselves are quite robust in other environments, solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature – reels may soften or warp and tape peel force may increase. KEMET recommends that maximum storage temperature not exceed 40°C and maximum storage humidity not exceed 70% relative humidity. In addition, temperature fluctuations should be minimized to avoid condensation on the parts and atmospheres should be free of chlorine and sulfur bearing compounds. For optimized solderability chip stock should be used promptly, preferably within 1.5 years of receipt.

Construction (Typical)

Capacitor Marking (Optional):

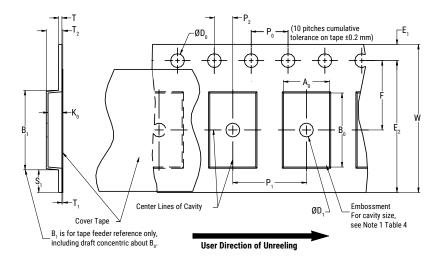
Laser marking option is not available on:


- COG, Ultra Stable X8R and Y5V dielectric devices
- · EIA 0402 case size devices
- EIA 0603 case size devices with Flexible Termination option.
- KPS Commercial and Automotive grade stacked devices.

These capacitors are supplied unmarked only.

Tape & Reel Packaging Information

KEMET offers multilayer ceramic chip capacitors packaged in 8, 12 and 16 mm tape on 7" and 13" reels in accordance with EIA Standard 481. This packaging system is compatible with all tape-fed automatic pick and place systems. See Table 2 for details on reeling quantities for commercial chips.


Table 5 – Carrier Tape Configuration, Embossed Plastic & Punched Paper (mm)

		Embosse	ed Plastic	Punche	d Paper
EIA Case Size	Tape Size (W)*	7" Reel	13" Reel	7" Reel	13" Reel
	()	Pitch	(P ₁)*	Pitch	(P ₁)*
01005 - 0402	8			2	2
0603	8			4	4
0805	8	4	4	4	4
1206 - 1210	8	4	4	4	4
1805 - 1808	12	4	4		
≥ 1812	12	8	8		
KPS 1210	12	8	8		
KPS 1812 and 2220	16	12	12		
Array 0612	8	4	4		

*Refer to Figures 1 and 2 for W and P₁ carrier tape reference locations. *Refer to Tables 6 and 7 for tolerance specifications.

Figure 1 – Embossed (Plastic) Carrier Tape Dimensions

Table 6 – Embossed (Plastic) Carrier Tape Dimensions

Metric will govern

		(Constant Dime	ensions – Mil	limeters (Inc	hes)			
Tape Size	D ₀	D ₁ Minimum Note 1	E ₁	P ₀	P ₂	R Reference Note 2	S ₁ Minimum Note 3	T Maximum	T ₁ Maximum
8 mm		1.0 (0.039)				25.0 (0.984)			
12 mm	1.5 +0.10/-0.0 (0.059 +0.004/-0.0)	1.5	1.75 ±0.10 (0.069 ±0.004)	4.0 ±0.10 (0.157 ±0.004)	2.0 ±0.05 (0.079 ±0.002)	30	0.600 (0.024)	0.600 (0.024)	0.100 (0.004)
16 mm		(0.059)				(1.181)			
		,	Variable Dime	ensions — Mil	limeters (Inch	ies)			
Tape Size	Pitch	B ₁ Maximum Note 4	E ₂ Minimum	F	P ₁	T ₂ Maximum	W Maximum	A ₀ ,B ₀	& K ₀
8 mm	Single (4 mm)	4.35 (0.171)	6.25 (0.246)	3.5 ±0.05 (0.138 ±0.002)	4.0 ±0.10 (0.157 ±0.004)	2.5 (0.098)	8.3 (0.327)		
12 mm	Single (4 mm) and double (8 mm)	8.2 (0.323)	10.25 (0.404)	5.5 ±0.05 (0.217 ±0.002)	8.0 ±0.10 (0.315 ±0.004)	4.6 (0.181)	12.3 (0.484)	Note 5	
16 mm	Triple (12 mm)	12.1 (0.476)	14.25 (0.561)	7.5 ±0.05 (0.138 ±0.002)	12.0 ±0.10 (0.157 ±0.004)	4.6 (0.181)	16.3 (0.642)		

1. The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of the embossment location and the hole location shall be applied independently of each other.

2. The tape with or without components shall pass around R without damage (see Figure 6.)

3. If S₁ < 1.0 mm, there may not be enough area for a cover tape to be properly applied (see EIA Standard 481, paragraph 4.3, section b.)

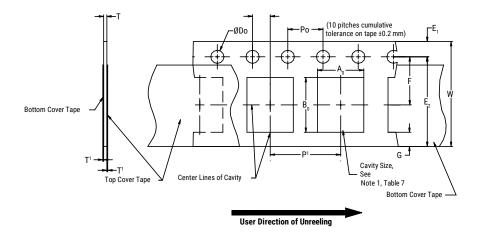
4. B, dimension is a reference dimension for tape feeder clearance only.

5. The cavity defined by A_{μ} , B_{μ} and K_{μ} shall surround the component with sufficient clearance that:

(a) the component does not protrude above the top surface of the carrier tape.

(b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.

(c) rotation of the component is limited to 20° maximum for 8 and 12 mm tapes and 10° maximum for 16 mm tapes (see Figure 3.)


(d) lateral movement of the component is restricted to 0.5 mm maximum for 8 and 12 mm wide tape and to 1.0 mm maximum for 16 mm tape (see Figure 4.)

(e) for KPS product, A_{a} and B_{a} are measured on a plane 0.3 mm above the bottom of the pocket.

(f) see addendum in EIA Standard 481 for standards relating to more precise taping requirements.

Figure 2 – Punched (Paper) Carrier Tape Dimensions

Table 7 – Punched (Paper) Carrier Tape Dimensions

Metric will govern

Constant Dimensions – Millimeters (Inches)									
Tape Size	D ₀	E ₁	P ₀	P ₂	T ₁ Maximum	G Minimum	R Reference Note 2		
8 mm	1.5 +0.10 -0.0 (0.059 +0.004 -0.0)	1.75 ±0.10 (0.069 ±0.004)	4.0 ±0.10 (0.157 ±0.004)	2.0 ±0.05 (0.079 ±0.002)	0.10 (0.004) maximum	0.75 (0.030)	25 (0.984)		
Variable Dimensions – Millimeters (Inches)									
Tape Size	Pitch	E2 Minimum	F	P ₁	T Maximum	W Maximum	A ₀ B ₀		
8 mm	Single (4 mm)	6.25 (0.246)	3.5 ±0.05 (0.138 ±0.002)	4.0 ±0.10 (0.157 ±0.004)	1.1 (0.043)	8.3 (0.327)	Note 1		

1. The cavity defined by $A_{o'}B_{o}$ and T shall surround the component with sufficient clearance that:

a) the component does not protrude beyond either surface of the carrier tape.

b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.

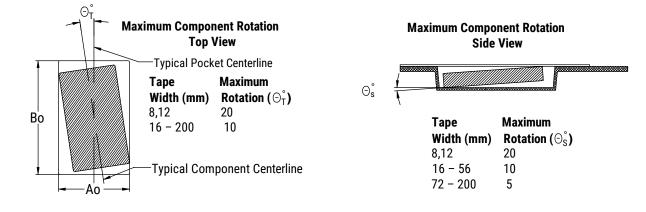
c) rotation of the component is limited to 20° maximum (see Figure 3.)

d) lateral movement of the component is restricted to 0.5 mm maximum (see Figure 4.)

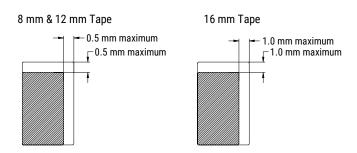
e) see addendum in EIA Standard 481 for standards relating to more precise taping requirements.

2. The tape with or without components shall pass around R without damage (see Figure 6.)

Packaging Information Performance Notes


- 1. Cover Tape Break Force: 1.0 kg minimum.
- 2. Cover Tape Peel Strength: The total peel strength of the cover tape from the carrier tape shall be:

Tape Width	Peel Strength		
8 mm	0.1 to 1.0 newton (10 to 100 gf)		
12 and 16 mm	0.1 to 1.3 newton (10 to 130 gf)		


The direction of the pull shall be opposite the direction of the carrier tape travel. The pull angle of the carrier tape shall be 165° to 180° from the plane of the carrier tape. During peeling, the carrier and/or cover tape shall be pulled at a velocity of 300 ± 10 mm/minute.

3. Labeling: Bar code labeling (standard or custom) shall be on the side of the reel opposite the sprocket holes. *Refer to EIA Standards 556 and 624*.

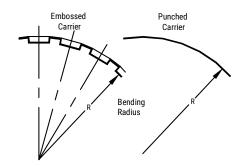

Figure 3 – Maximum Component Rotation

Figure 4 – Maximum Lateral Movement

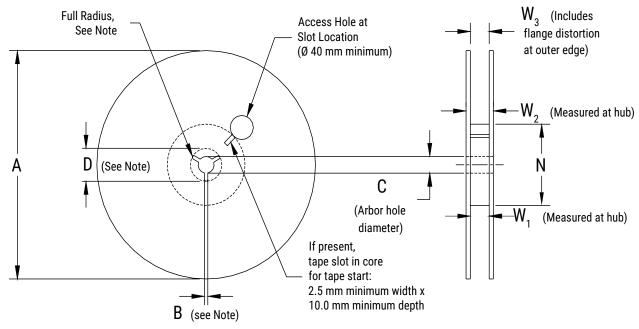
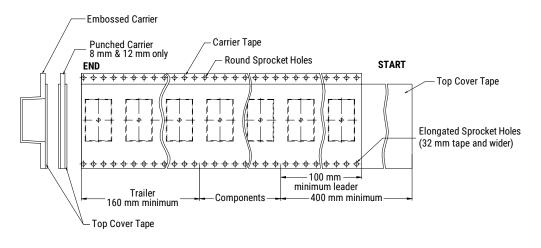


Figure 5 – Bending Radius

Figure 6 – Reel Dimensions

Note: Drive spokes optional; if used, dimensions B and D shall apply.


Table 8 – Reel Dimensions

Metric will govern

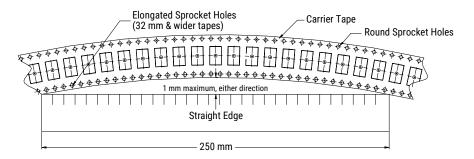

Constant Dimensions — Millimeters (Inches)									
Tape Size	A	B Minimum	С	D Minimum					
8 mm	178 ±0.20		13.0 +0.5/-0.2 (0.521 +0.02/-0.008)	20.2 (0.795)					
12 mm	(7.008 ±0.008) or	1.5 (0.059)							
16 mm	330 ±0.20 (13.000 ±0.008)		()						
	Variable Dimensions – Millimeters (Inches)								
Tape Size	N Minimum	W ₁	W ₂ Maximum	W ₃					
8 mm		8.4 +1.5/-0.0 (0.331 +0.059/-0.0)	14.4 (0.567)						
12 mm	50 (1.969)	12.4 +2.0/-0.0 (0.488 +0.078/-0.0)	18.4 (0.724)	Shall accommodate tape width without interference					
16 mm		16.4 +2.0/-0.0 (0.646 +0.078/-0.0)	22.4 (0.882)						

Figure 7 – Tape Leader & Trailer Dimensions

Figure 8 – Maximum Camber

KEMET Electronics Corporation Sales Offices

For a complete list of our global sales offices, please visit www.kemet.com/sales.

Disclaimer

YAGEO Corporation and its affiliates do not recommend the use of commercial or automotive grade products for high reliability applications or manned space flight.

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicated or that other measures may not be required.

KEMET is a registered trademark of KEMET Electronics Corporation.